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Abstract

The Lodgepole pine is a versatile tree that grows in the Uinta National Forest in Northern Utah. A
variety of factors have caused concern about their growth in recent years. Data collected on Lodgepole
Pine basal area (in ft*/acre), along with information on slope, aspect, and elevation at different locations
throughout the area can reveal the effects of environmental conditions on the tree’s growth. Larger slopes
have a negative effect on growth, and both elevation and aspect have nonlinear effects. Predictions on
unknown areas are calculated using a spatially correlated model with nonlinear effects. This model shows
that the optimal condition for Lodgepole Pines is a small slope (close to 0), with a Northwestern face,
at an elevation of around 9,600 f¢.

1 Background

The Uinta national forest is East of Salt Lake City, just South of Wyoming. This forest is known for great
camping, fishing, mountain-biking, skiing, and many other outdoor activities. This area is home to Utah’s
tallest mountain, King’s peak. Many species, including elk, deer, goats, bears, and otters live in this area.

One vital part of the ecosystem is the pine beetles. In past years, these beetles have been essential because
they make homes in dead trees and eat at them, making way for new life. Typically, the harsh winters have
maintained the beetle population to reasonable levels. Unfortunately, the mild winters in recent years have
caused a rampant beetle population that now feeds on both live and dead pines.

This report explores how one particular pine, the Lodgepole, is affected by particular environmental
factors. The Lodgepole pine tree is versatile; surprisingly, the tree’s cones actually release seeds when
exposed to heat, which makes it a great tree for revitalizing a forest after a fire. Data collected on these trees
reports the basal area (ft?/acre), along with covariate information for coordinates (latitude and longitude),
elevation, aspect (direction of face), and slope. Scatter plots on some of these covariates with the Lodgepole
pine basal area, along with a plot showing the basal area records by location are shown in Figure 1.
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(a) Lodgepole Basal Area and Covariates (b) Map of Lodgepole Pine Basal Area

Figure 1: Exploratory look at Lodgepole Data

A full exploration of the effects of these covariates on Lodgepole pine basal area must account for two main
data issues. First, these data have spatial correlation. One way to show this correlation is a semi-variogram,



which is shown for this example in Figure 2. A semi-variogram plots the spatial dependence between points
at various distances, by using a model that does not incorporate spatial correlation and comparing residuals
at different distances apart.

Semivariogram

Semivariance

Distance

Figure 2: Spatial Dependence between Points based on Distance

The plot in Figure 2 shows lower semivariance with smaller distances, which means that measurements
of basal area that are closer together have a higher correlation. The potential problem here is that without
accounting for spatial correlation, the confidence and prediction intervals involving this model would be
incorrect. This problem also causes invalid hypothesis test conclusions. Points for which we have a lot of
information (lots of nearby points), the confidence will be too low. Points that have no nearby points will
have confidence that is too high. Thus a final model must incorporate some form of spatial correlation.

Another problem with this data is that a few of the covariates have a nonlinear effect on basal area.
Added-variable plots (using a simple linear model with effects of all covariates) reveal that aspect and
elevation have nonlinear effects. These added-variable plots are shown in Figure 3. These plots display an
increasing effect of Aspect and a decreasing effect of elevation. This means that as elevation increases, the
effect of elevation on basal area decreases. If this problem is not included in a model, than the model may
estimate the opposite effect of aspect and/or elevation on basal area than what it should be.
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Figure 3: Added Variable Plots of Aspect and Elevation

A basis function on these two covariates can help solve this problem. Unfortunately, this report will be
making predictions on some points that have elevation outside of the range of the elevation for the data
for which we have basal areas. For example, the model is built off of data with a maximum elevation of
11,092. This report will predict on points that have a maximum elevation of 11,151 (beyond the range of
the training data).

The problem here is that if a model uses a polynomial basis function expansion on elevation for prediction,
the effect of elevation may diverge to a nonsensical or inaccurate amount beyond the range of the training



data. A natural spline basis function expansion on this covariate will account for the nonlinear effect, but
apply a linear effect beyond the bounds of the training data, thus making for more reasonable predictions.

Aspect is a measurement of which direction a location is facing. A measurement of 90 means that at that
point, it is facing North. A simple cosine/sine basis function expansion will convert this value into directional
values. Figure 4 shows the basal areas based on the aspect. If this type of basis function expansion is not
applied, then an aspect of 1 will be measured as extremely different than 359, even though in reality those
two aspects are extremely similar. If this problem was not accounted for, the difference in effects of two
aspects may be much larger than it should be.
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Figure 4: Lodgepole basal area by Aspect

The goals of this report are the following:
1. Define a model that accounts for spatial correlation and nonlinear effects
2. Verify that the assumptions of the model and assess fit and prediction ability

Explore how Lodgepole basal area is affected by its environment

L

Identify what conditions are conducive to Lodgepole pine growth

5. Predict the basal area for Lodgepole pines for areas with unknown basal areas

2 Introduction of Methods

The method that will account for both the spatial correlation and the nonlinear effects is a spatial Gaussian
process with basis function expansions for aspect and elevation. The two pieces of this method (spatial
Gaussian process and basis function expansions) will be explained, along with their strengths and weaknesses.
The assumptions of this method are also defined.

A natural spline is a basis function expansion, meaning it expands an X matrix to include new columns
that expand the original columns. A natural spline fits a third-degree polynomial on various segments of the
original column. The segmentation points are known as knots. Natural splines impose the constraint the
third-degree polynomial has a continuous first and second derivative at the knots. This constraint leads to
continuous changes in slope and continuous changes in convexity, essentially ”smoothing out” the function.
Natural splines will be used to get a basis function expansion on elevation.

A great advantage of natural splines is that outside of the boundaries of the knots, it fits a linear trend,
which limits the divergence that is likely when fitting a simple polynomial basis function expansion. Natural
splines allow for a flexible polynomial fit within the bounds and a less extreme, linear fit outside of the
bounds of the knots. One of the downsides to natural splines is that the number of knots (and where to
place the knots) is difficult. Cross validation is used to find the optimal number of knots that will be equally
spaced on the data. The actual function for the basis function expansion is complicated; this leaves the
model terms without any reasonable interpretation. Plots are the only way to show the effect of a covariate
on the response.

The basis function expansion that will be used for aspect is a cosine/sine function. The goal is to get
a continuous, circular scale for aspect, that measures directions properly. The scale of 0 to 360 is changed



to radians, by multiplying aspect by %. Adding 7/2 will set the index so that an aspect of 0 is taken as

North in a plot. Taking the cosine of this value gives a West/East measurement and the sine of this value
gives a North/South measurement. Therefore aspects that are similar to each other are now forced to have
similar effects.

A Gaussian process is a method of fitting a set of data as a single observation of a multivariate normal
distribution, with a specified variance-covariance matrix. The model is defined by the following:

Y ~ N(XB,0%((1 — w)R + wl))

o2 is the variance of decorrelated residuals and w is the "nugget”, or level of sampling variability. I is simply
the identity matrix. In this example, the R matrix is defined as a correlation matrix between the residuals
of the points in space, defined by the observations of the data.

1 Corr(er,e2) Corr(er,ez) ... Corr(er,ep)

Corr(eq, €2) 1 Corr(eg,e3) ... Corr(eg,€y)

R — | Corr(ey,e3)  Corr(e, €3) 1 ... Corr(es, €en)
Corr(er,€,) Corr(es,e,) Corr(es,e,) ... 1

The correlation between the residuals is defined as a function of the euclidean distance between two
observations. The ¢ term (the range) manages the correlation strength based on the distance and is chosen
through maximum likelihood estimation.

s ; x| } - {_ /(Ton; — Lonj)jb+ (Lat,; — Lat,)? }

Corr(e;,€5) = exp {

The B matrix is a k x 1 matrix of the linear effects of the columns of the n x k& X matrix, which is defined
by the following;:

1 Slope; cos (a5 Aspect; +m/2)  sin (%Aspectl +m/2) f(Elevation;)
X — |1 Slope, cos (#75Aspecty +m/2) sin (535 Aspecty +m/2)  f(Elevations)

where f is the multi-column natural spline function. This function is too complex to show above.

The strength of using basis function expansions is that it allows for nonlinear effects, while using a linear
model. For elevation, the natural spline is particularly beneficial because this report predicts on areas with
elevation outside the range of the elevation of the training data. Natural splines fit a linear trend beyond the
range of training data, so there will not be divergent predictions outside of that range. Within the range, a
smoothed piecewise polynomial is fit. The downside to this method is that the effects (in the 8 matrix) are
not interpretable.

The cosine/sine basis function expansion on aspect helps with interpretation. Changing the range of 0 to
360 to radians with range 0 to 27 allows the cosine and sine functions to measure the level of North/South
and West/East aspect. These values are more interpretable and allow for a continuous variable instead of
a ranged aspect variable. This basis function expansion is more difficult to plot, and can still be hard to
understand.

The spatial Gaussian process models spatially correlated values, which is what is needed in this approach.
Well outside the range of the training data, predictions rely more on X3 and near training data, predictions
rely more on the known data. Unfortunately, the weakness is that this process takes more time than a simple
linear regression with an independent response.

This model still assumes a linear relationship in 3 on the response, even after the basis function expan-
sions. Independence is not assumed in this model, but the decorrelated residuals should still be normally
distributed and have equal variance.



3 Justification and Performance Evaluation

The exact model included had 4 knots for elevation and excluded none of the variables. The knots were
selected based on root mean squared error (RMSE) through cross validation. The best value for ¢ and the
best nugget value is found through maximum likelihood.

A likelihood ratio test determined that elevation was has a significant nonlinear effect on Lodgepole basal
area (p-value: < .001). Aspect was also found to have a nonlinear effect (p-value: < .001). A likelihood
ratio test also confirmed the importance of including a spatial correlation term (p-value: < .001).

As stated in the previous section, the three assumptions that have to be met are linearity of 3 effects on
the response, normality of decorrelated residuals, and equal variance of decorrelated residuals.

The linearity can be checked through an added variable plot. Any curvature would indicate nonlinearity
in the 8. Normality can be checked by a density plot of the decorrelated residuals, compared to a standard
normal density. The equal variance assumption can be checked by a scatterplot of residuals against the fitted
values. There shouldn’t be an increasing or decreasing spread.
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Figure 5: Checking the Assumptions

Figure 5 contains all three of these plots. The added variable plots have no concerning curvature. The
density plot looks roughly normal. A KS test yields a p-value of .0666 of the decorrelated residuals being
significantly different from a Normal distribution. The fitted values vs residuals are slightly conical, but
not enough for major concern. The outlier shown in the top right corner is observation 35, which is the
observation with the highest Lodgepole basal area. There is no extreme or concerning evidence against any
of the three assumptions.
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Figure 6: Nonlinear Effects

The cross-validated RMSE of this model is 2.8035. Compared to the standard deviation of the original
areas of 6.2391, this is small prediction error. Instead of an R? value, this report includes a substitute

steudo = cor(f,y)? = 0.5951. This means that there is a ,/R? = 1/.5951 = .7714 correlation between

pseudo

fitted and actual values using this model. The maximum R? is 1.000 and the minimum is 0.0000. Thus

pseudo
a R? of 0.5951 is relatively good fit.

pseudo



4 Results

The two main questions of this report are 1) what are the optimal conditions for Lodgepole pine growth and
2) what are the predicted basal areas for the locations for which they are unknown.

Based on the model, for a 1 degree increase in slope, the Lodgepole pine basal area decreases by 0.0391
(95% CI: 0.0039 to 0.0742). A bigger slope can lead to soil erosion and shallow roots. The two covariates
with nonlinear effects are interpreted graphically. Figure 6 shows these effects. On the left, the plot shows
the effect of different aspects on Lodgepole basal area, ranging from —0.7034 to 0.7034. Because the sun sets
in the West, a Westward tree likely gets more sun. On the right, the plot shows the effect of elevation on
Lodgepole basal area. The elevation is a balancing act because fewer species can survive at higher elevations,
so some elevations may be conducive for the Lodgepole and many other species, while others just for the
Lodgepole. At a certain elevation the Lodgepole pine also struggles to grow.

Thus, the best conditions for Lodgepole pine growth is a slope as small as possible (0 degrees), the
mountain facing Northwest, and the elevation about 9,600ft. Because areas are spatially correlated, a
location with good growth will likely have good growth in nearby locations.
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Figure 7: Predicted Lodgepole basal area

Figure 7 shows the predictions on the specified locations with no numbers for Lodgepole basal area. The
predictions are compared side-by-side with the actual given values, for comparison. The 95% prediction
intervals are shown in Figure 8.
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Figure 8: 95% Prediction Intervals on Lodgepole basal area



5 Conclusion

The goals of this report started with defining a model that accounts for spatial correlation and nonlinear
effects. The spatially correlated Gaussian process with basis function expansions for elevation and aspect did
this. The assumptions of this model were linearity of 3 on the response, normality of decorrelated residuals,
and equal variance of the decorrelated residuals. The model had an RMSE of 2.8035, which is low when
compared to the standard deviation of 6.2391. The Rgseudo was 0.5951.

Larger slope has a negative effect on Lodgepole basal area. Elevation has a positive effect on basal area
at lower elevations and a negative effect at higher elevations. Northwestern aspect has a positive impact on
basal area, while Southeastern has a negative effect. The environmental factors most conducive to Lodgepole
pine growth is a flat area, preferably facing the Northwest, with an elevation of about 9,600 ft. Predictions
for the unknown areas are shown in Figure 7, with 95% prediction intervals shown in Figure 8.

There are a few shortcomings to the current method. One shortcoming is that other forms of spatial
correlation besides Gaussian with equal variance in decorrelated residuals was not tested. The density plot
of the residuals and the fitted values vs. residuals plot revealed that checking some other form of model is
warranted, although the current approach is not entirely unrealistic.

Another shortcoming of this analysis is that it encapsulates little about the environmental factors. Even
though the Rgseudo isn’t bad, there are likely many other factors that could play into how well Lodgepole
pines grow. Covariates concerning wildlife growth, water flow, air quality, and others could give a more
comprehensive look into Lodgepole growth. This could be a next step for the analysis. Other next steps
for the analysis would be evaluating other non-Gaussian forms of correlation or how these responses change
over time.



